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[Introduction] [Results]

A key challenge in structural health monitoring (SHM) is managing epistemic and
aleatory uncertainties and improving computational efficiency for real-time analysis. S

. T . . . . . eature Layer
This study uses probabilistic theory and Bayesian methods to quantify uncertainties in V- Feature Variablos
SHM, focusing on damage severity estimation while considering measurement noise, (id;fl'ﬁﬁed tension of C;)
environmental factors, and multi-damage effects.

[ O bJ € Ctlve ] Output Layer
The research aims to develop a Bayesian network model for damage assessment, X;j: Damage Variables
incorporating feature variables (FVs), damage variables (DVs), and environmental and (section reduction of C;))
operational variables (EOVs), and dependencies among these variables. The model
seeks to provide a robust framework for uncertainty quantification.
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The proposed model employs the Junction Tree Algorithm with Importance Sampling Zois

(JT-IS) to efficiently handle multi-variable Bayesian inference. This approach enables o L

accurate and computationally efficient processing of multi-dimensional data inputs 0
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and damage outputs. The results demonstrate the model's potential for real-time SHM Damage severit(®)
applications, offering a significant improvement in damage detection and severity Bl [T.C1LT C12,...) Bl [TC2LT .22, i [T.CHLT.C32,..) POy, [T.CA1,T_C42, ...) B8 IT.CHLT.C52, ..)
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estimation under complex operational conditions. £
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* Dynamic Bayesian Network (DBN) for SHM of Stay Cables using Time-varying Data. Fig.1. Damage posterior of ten stay cables given a group of input data.

Fig.1. Bayesian Network modeling for feature variables and damage variables.
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